Inferring the shape of global epistasis

نویسندگان

  • Jakub Otwinowski
  • David M. McCandlish
  • Joshua B. Plotkin
چکیده

Genotype-phenotype relationships are notoriously complicated. Idiosyncratic interactions between specific combinations of mutations occur, and are difficult to predict. Yet it is increasingly clear that many interactions can be understood in terms of global epistasis. That is, mutations may act additively on some underlying, unobserved trait, and this trait is then transformed via a nonlinear function to the observed phenotype as a result of subsequent biophysical and cellular processes. Here we infer the shape of such global epistasis in three proteins, based on published high-throughput mutagenesis data. To do so, we develop a maximum-likelihood inference procedure using a flexible family of monotonic nonlinear functions spanned by an I-spline basis. Our analysis uncovers dramatic nonlinearities in all three proteins; in some proteins a model with global epistasis accounts for virtually all the measured variation, whereas in others we find substantial local epistasis as well. This method allows us to test hypotheses about the form of global epistasis and to distinguish variance components attributable to global epistasis, local epistasis, and measurement error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation load under additive fitness effects

Under the traditional mutation load model based on multiplicative fitness effects, the load in a population is 1-e-U , where U is the genomic deleterious mutation rate. Because this load becomes high under large U, synergistic epistasis has been proposed as one possible means of reducing the load. However, experiments on model organisms attempting to detect synergistic epistasis have often focu...

متن کامل

eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways

MOTIVATION Epistasis is the interactions among multiple genetic variants. It has emerged to explain the 'missing heritability' that a marginal genetic effect does not account for by genome-wide association studies, and also to understand the hierarchical relationships between genes in the genetic pathways. The Fisher's geometric model is common in detecting the epistatic effects. However, despi...

متن کامل

Polytopes, graphs and fitness landscapes

Darwinian evolution can be illustrated as an uphill walk in a landscape, where the surface consists of genotypes, the height coordinates represent fitness, and each step corresponds to a point mutation. Epistasis, roughly defined as the dependence between the fitness effects of mutations, is a key concept in the theory of adaptation. Important recent approaches depend on graphs and polytopes. F...

متن کامل

AntEpiSeeker2.0: extending epistasis detection to epistasis- associated pathway inference using ant colony optimization

Genome-wide association studies (GWAS) have become a standard method for finding genetic variations that contribute to common, complex diseases. Recently, it is suggested that these diseases may be caused by epistatic interactions of multiple genetic variations. Although tens of software tools have been developed for epistasis detection, few are able to infer pathway importance from the identif...

متن کامل

Inferring Gene Function and Network Organization in Drosophila Signaling by Combined Analysis of Pleiotropy and Epistasis

High-throughput genetic interaction screens have enabled functional genomics on a network scale. Groups of cofunctional genes commonly exhibit similar interaction patterns across a large network, leading to novel functional inferences for a minority of previously uncharacterized genes within a group. However, such analyses are often unsuited to cases with a few relevant gene variants or sparse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018